If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-30x-675=0
a = 2; b = -30; c = -675;
Δ = b2-4ac
Δ = -302-4·2·(-675)
Δ = 6300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6300}=\sqrt{900*7}=\sqrt{900}*\sqrt{7}=30\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30\sqrt{7}}{2*2}=\frac{30-30\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30\sqrt{7}}{2*2}=\frac{30+30\sqrt{7}}{4} $
| -8(k-1)-4=-2(5k+1) | | 9(5x-3/2)=(7)(x) | | 6/a=14/21 | | 6w-13w=40 | | -34=5=7(v-2) | | (x+14)*2=134 | | (1/4x+14=66) | | 2*{x+14)=134 | | n-8=4×3 | | x^2-4=3x+24 | | -7=n/5-5 | | n-8=4•3 | | 8(8d+3)=-28 | | f(-3)=3|-3+1+5 | | 6(x-5)-10=3(4x-2)-4x | | (3n-8)=16 | | 6(x-5)-10=3(4x-2)-4 | | 5x-4-1=3 | | -d/12=-11 | | 6(x-5)-10=(4x-2)-4x | | (12x-9)=(9x+4) | | m+24=33m= | | 4/3x-1/3=4(22)-1/3 | | 2(5y-8)=4(2y+20) | | (2x+4)=(6x-100) | | 17-x2/3=-9 | | 3x+2=-3x-2 | | 4÷3=8÷x-1 | | (12n-12)=90 | | 5m–2m=2m+14 | | 4/3=8/z-1 | | 6(4/3x-1/3)=6(x+7) |